

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/image-pipe/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/image-pipe/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Image_pipe

Pipeline building solution for 4D biological microscopy

This project is still in development. Initially started as a tool for Ruan, Zhou et al, Nature 2017, this pipeline has since grown to allow arbitrary pipeline construction based on a set of primitive functions and abstractions (pipe, tiling, per-segment processing, etc...).

This project is currently in pre-alpha development, hence undocumentend, contains no unit tests and prone to rapid changes.

Stay tuned for more information; if you want to use it, the License is MIT.

This is a general library for image processing

Logic in the

Logic layers:

	Traversal

	Matching of the images to different channels

	Segmentation of
a. Mitochondria
b. Cells

	Retrieval of descriptors each surface/volume

	Classification of a surface/volume
a. with respect to the signal intensity => Cell death
b. with respect to the geometry
i. Area, skeleton, => fragmented mitochondria or not

	Re-hashing of the file names in order to extract time-stamp

	Perform time-line tracing and statistics calculation

DEBUG: output the graphical representation of what has been done by different cell

Desired code:

Attach the debuger
set.debugger(dump_location = "./verification/", layers={"layer1":12, })

point to the source folder
set.source_folder("xxxx")

map a pattern in the name to a color channel
input.images = set.color_pattern({"_1465":"green", "_2660":"red"})

intermediate.cells = pipeline.step.add(segment.cells(input.images["green"], binary=True), debugger=layer1)
intermediate.cells = pipeline.step.add(remove outliers(intermediate.cells, "green"), debugger=layer2)
intermediate.cells = pipeline.step.add(remove outliers(intermediate.cells, "red"), debugger=layer2)
intermediate.granules = pipeline.step.add(segment.granules(intermediate.cells, "green"), debugger=layer3)
intermediate.mitochondriae = pipeline.step.add(segment.threshold(intermediate.cells, "red"), debugger=layer3)

colocalization = pipeline.step.add(colocalization.first_in_second(granules, mitochondriae), debugger=layer3)
anti_colocalization = pipeline.step.add(colocalization.first_in_second(granules, not(mitochondriae)), debugger=layer3)

pipeline.save.pattern(input.image.shorcode, colocalization, anti_colocalization)

save.location("final_table.csv")

pipeline.run()

Remarks:

In fact, we don’t really need an explicit pipeline class to assem ble the pipeline.
We use intermediate variables within the user class in order `to stitch the pipeline
and store the intermediate processes. We can as well plug the debug process to
get the function debug output as it goes.

Unless we are using yield statements, in which case the pipeline would be performing
processing ticks.

Idea - separate the namespaces that are logical in the context of the analysis

In order to avoid the generator once-consumed property, use multiple pass-through
objects in dicts. That will also make it for an easy debugging in the end

Formalism:

Can we replace the in_channel, out_channel, log_channel with actual bindings to the variables?
Right now, we are using an explicit dict for scope passing - could we rather use the function names?

What I am trying is basically to make flow control explicit by using an assembly-line
model. The sort-coming is that I am using words, so I am using a lot Python interpreter errors
and IDEs power.

A way around it is to hack the pipeline in the same manner as the guy who wrote hy (py-lisp)

Sub-segmentation

As of now, the mechanics of our method are operation only on the full image frames.
If we want to segment the image for the analysis any further, for instance in order to
perform cell-specific processing, would need to:
- have a sencond generator wrapping / unwrapping routine
- second-level dictionary store in the dict. Basically a

The second generator is basically a wrapper around the generator wrapper to execute
the same instruction over a generator of generators, where the inner generator is processed
by the generator wrapper logic, whereas the outer is processed by the second layer of wrapping

=> That’s basically a double generator_wrapper, but that cannot support the expected dims because
a dict is being passed.
=> We actually just need the outer wrapper, the inner can be just the generator wrapper

Registering Run:

As of now, it is pretty trivial to get the current revision from git and the source/dump locations
of all the elements. to get the replicability within the pipeline.

Possible usages:

	Assembly of generator-based sub-pipes

	Assembly of input-output chains and then wrapping them into pipe

Organization:

	Core functions => Non-wrapped, testable

	Pipeline logic => Generator-wrapped, ready for assembly; wrappers

	Pre-assembled filters

	It is all to be imported into the actual field and

From the usage

	we definitely need a pipeline assembly - it is too easy to forget the pipe redirections between the generators

	it is a bit frustrating to be unable to add elementary modifications to channels when they are injected

	protection against dims mismatch is good and saves some time

	the fact that stack trace returns nothing informative is definitely a minus

Reformulation

A pretty clear way of dealing with it is to re-write to get rid of the wrappers
and reduce it all to a main for loop with embedded for sub-loops.
Nitty-gritty details:
- splitter needs to be a generator, returning values we want to use in the end
- secondary namespace
- point/tile/summarize

Audit:

	Word audit trail explaining what function does?

	Image binding into the final rendering frame?

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

